链表(上)

探索链表(上)

缓存

介绍

缓存的作用:提高数据读取性能。 缓存设计的好不好,要看自己所设计的缓存的命中率高不高。

缓存的应用场景

硬件中的缓存: CPU缓存,而cpu缓存又可以分为寄存器,一级缓存,二级缓存,三级缓存。 软件中的缓存: 数据库缓存,数据库本身产品就自带缓存。redis也可以作为数据库缓存. 浏览器缓存,就是我们常说的Cookie,本质上就是一个文件。

缓存淘汰策略

先进先出策略 FIFO(First In,First Out)、最少使用策略 LFU(Least Frequently Used)、最近最少使用策略 LRU(Least Recently Used)

eg:

FIFO(先进先出调度器) 、Capacity Scheduler(容量调度器)和 Fair Sceduler(公平调度器)。

链表结构

不需要一块连续的内存空间,它通过“指针”将一组零散的内存块串联起来使用。

对内存要求方面: 数组对内存的要求更高。因为数组需要一块连续内存空间来存放数据。(可能出现的问题就是:内存总的剩余空间足够,但是申请容量较大的数组时申请失败) 链表对内存的要求较低,是因为链表不需要连续的内存空间,只要内存剩余空间足够,无论是否连续,用链表来申请空间一定会成功。 但是要注意:链表虽然方便。但是内存开销比数组大了将近一倍,假设存储100个整数,数组400个字节的存储空间足够了。但是如果用链表存储100个整数,链表得需要800个字节的存储空间,因为链表中的每个节点不止要存储数据,还要存储地址,内存的利用率就比数组低太多了。 由此还可以得出:如果内存容量本身就很小,要存储的数据也比较多。选择数组来存储数据更好,如果内存空间充足,那我们在存储数据的时候到底选择链表还是数组。这个就视具体的业务场景而定了。

三种常见链表结构:单链表, 双链表和循环链表

单链表

习惯性地把第一个结点叫作头结点,把最后一个结点叫作尾结点

头结点用来记录链表的基地址。有了它,我们就可以遍历得到整条链表。

尾结点特殊的地方是:指针不是指向下一个结点,而是指向一个空地址 NULL,表示这是链表上最后一个结点。

查找、删除和插入

在链表中插入或者删除一个数据,我们并不需要为了保持内存的连续性而搬移结点,因为链表的存储空间本身就不是连续的。所以,在链表中插入和删除一个数据是非常快速的。

但是,因为链表中的数据并非连续存储的,所以无法像数组那样,根据首地址和下标,通过寻址公式就能直接计算出对应的内存地址,而是需要根据指针一个结点一个结点地依次遍历,直到找到相应的结点。时间复杂度O(n)

循环链表

循环链表是一种特殊的单链表

跟单链表唯一的区别就在尾结点。我们知道,单链表的尾结点指针指向空地址,表示这就是最后的结点了。而循环链表的尾结点指针是指向链表的头结点。

双向链表

它支持两个方向,每个结点不止有一个后继指针 next 指向后面的结点,还有一个前驱指针 prev 指向前面的结点。双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。

双向链表可以支持 O(1) 时间复杂度的情况下找到前驱结点。

空间换取时间

当内存空间充足的时候,如果我们更加追求代码的执行速度,我们就可以选择空间复杂度相对较高、但时间复杂度相对很低的算法或者数据结构。

对于执行较慢的程序,可以通过消耗更多的内存(空间换时间)来进行优化;而消耗过多内存的程序,可以通过消耗更多的时间(时间换空间)来降低内存的消耗。

链表 VS 数组

数组简单易用,在实现上使用的是连续的内存空间,可以借助 CPU 的缓存机制,预读数组中的数据,所以访问效率更高。而链表在内存中并不是连续存储,所以对 CPU 缓存不友好,没办法有效预读。链表本身没有大小的限制,天然地支持动态扩容,这是它与数组最大的区别

eg:

CPU在从内存读取数据的时候,会先把读取到的数据加载到CPU的缓存中。而CPU每次从内存读取数据并不是只读取那个特定要访问的地址,而是读取一个数据块(这个大小我不太确定。。)并保存到CPU缓存中,然后下次访问内存数据的时候就会先从CPU缓存开始查找,如果找到就不需要再从内存中取。这样就实现了比内存访问速度更快的机制,也就是CPU缓存存在的意义:为了弥补内存访问速度过慢与CPU执行速度快之间的差异而引入。 对于数组来说,存储空间是连续的,所以在加载某个下标的时候可以把以后的几个下标元素也加载到CPU缓存这样执行速度会快于存储空间不连续的链表存储。

如何基于链表实现 LRU 缓存淘汰算法?

维护一个有序单链表,越靠近链表尾部的结点是越早之前访问的。

当有一个新的数据被访问时,我们从链表头开始顺序遍历链表。

  1. 如果此数据之前已经被缓存在链表中了,我们遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的头部。
  2. 如果此数据没有在缓存链表中,又可以分为两种情况:
    • 如果此时缓存未满,则将此结点直接插入到链表的头部;
    • 如果此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。

思路优化:引入散列表(Hash table)来记录每个数据的位置,将缓存访问的时间复杂度降到 O(1)。

思考

如何判断一个字符串是否是回文字符串的问题?

1 快慢指针定位中间节点
2 从中间节点对后半部分逆序
3 前后半部分比较,判断是否为回文
4 后半部分逆序复原

时间复杂度On, 空间复杂度O1


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!