哈希算法(下)
哈希算法在分布式系统中有哪些应用?
负载均衡
我们可以通过哈希算法,对客户端 IP 地址或者会话 ID 计算哈希值,将取得的哈希值与服务器列表的大小进行取模运算,最终得到的值就是应该被路由到的服务器编号。
数据分片
如何统计“搜索关键词”出现的次数?
先对数据进行分片,然后采用多台机器处理的方法,来提高处理速度。具体的思路是这样的:为了提高处理的速度,我们用 n 台机器并行处理。我们从搜索记录的日志文件中,依次读出每个搜索关键词,并且通过哈希函数计算哈希值,然后再跟 n 取模,最终得到的值,就是应该被分配到的机器编号。
这里的处理过程也是 MapReduce 的基本设计思想
如何快速判断图片是否在图库中?
我们同样可以对数据进行分片,然后采用多机处理。我们准备 n 台机器,让每台机器只维护某一部分图片对应的散列表。我们每次从图库中读取一个图片,计算唯一标识,然后与机器个数 n 求余取模,得到的值就对应要分配的机器编号,然后将这个图片的唯一标识和图片路径发往对应的机器构建散列表。当我们要判断一个图片是否在图库中的时候,我们通过同样的哈希算法,计算这个图片的唯一标识,然后与机器个数 n 求余取模。假设得到的值是 k,那就去编号 k 的机器构建的散列表中查找。
实际上,针对这种海量数据的处理问题,我们都可以采用多机分布式处理。借助这种分片的思路,可以突破单机内存、CPU 等资源的限制。
分布式存储
借用前面数据分片的思想,即通过哈希算法对数据取哈希值,然后对机器个数取模,这个最终值就是应该存储的缓存机器编号。但是,如果数据增多,原来的 10 个机器已经无法承受了,我们就需要扩容了。
此时,所有的数据都要重新计算哈希值,然后重新搬移到正确的机器上。这样就相当于,缓存中的数据一下子就都失效了。所有的数据请求都会穿透缓存,直接去请求数据库。这样就可能发生雪崩效应,压垮数据库。
一致性哈希算法
假设我们有 k 个机器,数据的哈希值的范围是[0, MAX]。我们将整个范围划分成 m 个小区间(m 远大于 k),每个机器负责 m/k 个小区间。当有新机器加入的时候,我们就将某几个小区间的数据,从原来的机器中搬移到新的机器中。这样,既不用全部重新哈希、搬移数据,也保持了各个机器上数据数量的均衡。
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!