贪心算法

用贪心算法实现Huffman压缩编码

如何理解“贪心算法”?

针对一组数据,我们定义了限制值和期望值,希望从中选出几个数据,在满足限制值的情况下,期望值最大。每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据。

但是实际上,用贪心算法解决问题的思路,并不总能给出最优解。

贪心算法实战分析

分糖果

我们有 m 个糖果和 n 个孩子。我们现在要把糖果分给这些孩子吃,但是糖果少,孩子多(m<n),所以糖果只能分配给一部分孩子。如何分配糖果,能尽可能满足最多数量的孩子?

方案是:首先将孩子对糖果大小的需求排序,得到:g1 <= g2 <= g3,…; 再对糖果的大小进行排序:s1 <= s2 <= s3 …; 从g1开始遍历所有的g,找能够满足大于等于g的最小的糖果;由此,被满足的孩子个数是最多的。

钱币找零

假设我们有 1 元、2 元、5 元、10 元、20 元、50 元、100 元这些面额的纸币,它们的张数分别是 c1、c2、c5、c10、c20、c50、c100。我们现在要用这些钱来支付 K 元,最少要用多少张纸币呢?

方案是:先用面值最大的来支付,如果不够,就继续用更小一点面值的,以此类推,最后剩下的用 1 元来补齐。

区间覆盖

假设我们有 n 个区间,区间的起始端点和结束端点分别是[l1, r1],[l2, r2],[l3, r3],……,[ln, rn]。我们从这 n 个区间中选出一部分区间,这部分区间满足两两不相交(端点相交的情况不算相交),最多能选出多少个区间呢?

解决思路:我们假设这 n 个区间中最左端点是 lmin,最右端点是 rmax。这个问题就相当于,我们选择几个不相交的区间,从左到右将[lmin, rmax]覆盖上。我们按照起始端点从小到大的顺序对这 n 个区间排序。我们每次选择的时候,左端点跟前面的已经覆盖的区间不重合的,右端点又尽量小的,这样可以让剩下的未覆盖区间尽可能的大,就可以放置更多的区间。这实际上就是一种贪心的选择方法。

霍夫曼编码

霍夫曼编码不仅会考察文本中有多少个不同字符,还会考察每个字符出现的频率,根据频率的不同,选择不同长度的编码。霍夫曼编码试图用这种不等长的编码方法,来进一步增加压缩的效率。如何给不同频率的字符选择不同长度的编码呢?根据贪心的思想,我们可以把出现频率比较多的字符,用稍微短一些的编码;出现频率比较少的字符,用稍微长一些的编码。对于等长的编码来说,我们解压缩起来很简单。但是,霍夫曼编码是不等长的,每次应该读取 1 位还是 2 位、3 位等等来解压缩呢?这个问题就导致霍夫曼编码解压缩起来比较复杂。为了避免解压缩过程中的歧义,霍夫曼编码要求各个字符的编码之间,不会出现某个编码是另一个编码前缀的情况。

假设这 6 个字符出现的频率从高到低依次是 a、b、c、d、e、f。我们把它们编码下面这个样子,任何一个字符的编码都不是另一个的前缀,在解压缩的时候,我们每次会读取尽可能长的可解压的二进制串,所以在解压缩的时候也不会歧义。经过这种编码压缩之后,这 1000 个字符只需要 2100bits 就可以了。

如何根据字符出现频率的不同,给不同的字符进行不同长度的编码

我们把每个字符看作一个节点,并且附带着把频率放到优先级队列中。我们从队列中取出频率最小的两个节点 A、B,然后新建一个节点 C,把频率设置为两个节点的频率之和,并把这个新节点 C 作为节点 A、B 的父节点。最后再把 C 节点放入到优先级队列中。重复这个过程,直到队列中没有数据。

现在,我们给每一条边加上画一个权值,指向左子节点的边我们统统标记为 0,指向右子节点的边,我们统统标记为 1,那从根节点到叶节点的路径就是叶节点对应字符的霍夫曼编码。

总结

贪心算法适用的场景比较有限。这种算法思想更多的是指导设计基础算法。比如最小生成树算法、单源最短路径算法,这些算法都用到了贪心算法。

思考

在一个非负整数 a 中,我们希望从中移除 k 个数字,让剩下的数字值最小,如何选择移除哪 k 个数字呢?

由高位开始两两比较大小,若高位大,低位小,则删除高位;反之右移一位。循环k次。

假设有 n 个人等待被服务,但是服务窗口只有一个,每个人需要被服务的时间长度是不同的,如何安排被服务的先后顺序,才能让这 n 个人总的等待时间最短?

前面的被服务时间会影响,后面的被服务时间;总时间是后面的时间加上前面的时间和,所以,从服务时间最少的开始服务。


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!